Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J. oral res. (Impresa) ; 12(1): 86-99, abr. 4, 2023. ilus
Article in English | LILACS | ID: biblio-1512278

ABSTRACT

Objective: The objective of this study was to investigate the morphology, proliferation, and differentiation of gingival mesenchymal stem cells (GMSCs) irradiated with a 970 nm Diode Laser (LLLT). It is essential to validate the efficacy of treatment, optimize irradiation conditions and guarantee the safety and quality of stem cells for future use in dental applications. Materials and Methods: GMSCs were cultured in standard conditions and irradiated with a Diode laser (970 nm, 0.5W) with an energy density of 9J/cm2. Cell proliferation was assessed with the WST-1 proliferation kit. GMSCs were differentiated into chondrogenic and osteogenic lineages. Cell morphology was performed with Hematoxylin/eosin staining, and quantitative nuclear analysis was done. Cell viability was monitored with trypan blue testing. Results: GMSCs subjected to irradiation demonstrated a significant increase in proliferation at 72 hours compared to the non-irradiated controls (p=0.027). This indicates that the 970 nm diode laser has a stimulatory effect on the proliferation of GMSCs. LLLT-stimulated GMSCs exhibited the ability to differentiate into chondrogenic and osteogenic lineages. A substantial decrease in cell viability was observed 24 hours after irradiation (p=0.024). However, after 48 hours, the cell viability recovered without any significant differences. This indicates that there might be a temporary negative impact on cell viability immediately following irradiation, but the cells were able to recover and regain their viability over time. Conclusions: This study support that irradiation with a 970 nm diode laser could stimulate the proliferation of GMSCs, maintain their ability to differentiate into chondrogenic and osteogenic lineages, and has minimal impact on the mor- phological characteristics of the cells. These results support the potential use of NIR Lasers in combination with GMSCs as a promising strategy for dental treatments.


Objetivo: El objetivo de este estudio fue investigar la morfología, proliferación y diferenciación de las células madre mesenquimatosas (GMSC) irradiadas con un láser de diodo de 970 nm (LLLT). Es fundamental validar la eficacia del tratamiento, optimizar las condiciones de irradiación y garantizar la seguridad y calidad de las células madre para su uso futuro en aplicaciones dentales.Materiales y Métodos: Las GMSC se cultivaron en condiciones estándar y se irradiaron con un láser de diodo (970 nm, 0,5 W) con una densidad de energía de 9 J/cm2. La proliferación celular se evaluó con el kit de proliferación WST-1. Las GMSC se diferenciaron en linajes condrogénicos y osteogénicos. La morfología celular se realizó con tinción de hematoxilina/eosina y se realizó un análisis nuclear cuantitativo. La viabilidad celular se controló con prueba de azul de tripano. Resultados: Las GMSC sometidas a irradiación demostraron un aumento significativo en la proliferación a las 72 horas en comparación con los controles no irradiados (p=0,027). Esto indica que el láser de diodo de 970 nm tiene un efecto estimulante sobre la proliferación de GMSC. Las GMSC estimuladas con LLLT exhibieron la capacidad de diferenciarse en linajes condrogénicos y osteogénicos. Se observó una disminución sustancial de la viabilidad celular 24 horas después de la irradiación (p=0,024). Sin embargo, después de 48 horas, la viabilidad celular se recuperó sin diferencias significativas. Esto indica que podría haber un impacto negativo temporal en la viabilidad de las células inmediatamente después de la irradiación, pero las células pudieron recuperarse y recuperar su viabilidad con el tiempo. Conclusión: En conclusión, este estudio respalda que la irradiación con un láser de diodo de 970 nm podría estimular la proliferación de GMSC, mantener su capacidad para diferenciarse en linajes condrogénicos y osteogénicos y tiene un impacto mínimo en las características morfológicas de las células. Estos resultados respaldan el uso potencial de láseres NIR en combinación con GMSC como una estrategia prometedora para tratamientos dentales.


Subject(s)
Humans , Low-Level Light Therapy , Cell Proliferation/radiation effects , Lasers, Semiconductor , Mesenchymal Stem Cells/radiation effects , In Vitro Techniques , Gingiva/radiation effects
2.
Biomedical and Environmental Sciences ; (12): 693-704, 2021.
Article in English | WPRIM | ID: wpr-921320

ABSTRACT

Objective@#The aim of this study was to explore the effects of 2-hexyl-4-pentylenic acid (HPTA) in combination with radiotherapy (RT) on distant unirradiated breast tumors.@*Methods@#Using a rat model of chemical carcinogen (7,12-dimethylbenz[a]anthracene,DMBA)-induced breast cancer, tumor volume was monitored and treatment response was evaluated by performing HE staining, immunohistochemistry, immunofluorescence, qRT-PCR, and western blot analyses.@*Results@#The results demonstrated that HPTA in combination with RT significantly delayed the growth of distant, unirradiated breast tumors. The mechanism of action included tumor-associated macrophage (TAM) infiltration into distant tumor tissues, M1 polarization, and inhibition of tumor angiogenesis by IFN-γ.@*Conclusion@#The results suggest that the combination of HPTA with RT has an abscopal effect on distant tumors


Subject(s)
Animals , Female , Rats , Antineoplastic Agents/therapeutic use , Cell Proliferation/radiation effects , Combined Modality Therapy , Cytokines/immunology , Fatty Acids, Unsaturated/therapeutic use , Mammary Neoplasms, Experimental/radiotherapy , Tumor-Associated Macrophages/radiation effects
3.
Arq. bras. oftalmol ; 82(1): 38-44, Jan.-Feb. 2019. tab, graf
Article in English | LILACS | ID: biblio-973869

ABSTRACT

ABSTRACT Purpose: To evaluate the effects of ranibizumab and amfenac in human uveal melanoma cell lines and to explore the ability of these compounds to sensitize uveal melanoma cells to radiation therapy. Methods: The 92.1 human uveal melanoma cell line was cultured and subjected to the proposed treatment (ranibizumab, amfenac, and a combination of both). Proliferation, migration, and invasion assays of the 92.1 uveal melanoma cell line were assessed after pretreatment with ranibizumab (125 mg/mL), amfenac (150 nM), or a combination of both. In addition, proliferation rates were assessed after treatment with ranibizumab and amfenac, and the cells were subsequently exposed to various radiation doses (0, 4, and 8 Gy). Results: Proliferation assay: cells treated with a combination of ranibizumab and amfenac had lower proliferation rates than controls (p=0.016) and than those treated with only ranibizumab (p=0.033). Migration assay: a significantly lower migration rate was observed in cells treated with amfenac than the control (p=0.014) and than those treated with ranibizumab (p=0.044). Invasion assay: there were no significant differences among the studied groups. Irradiation exposure: in the 4 Gy dose group, there were no significant differences among any groups. In the 8 Gy dose group, treatment with ranibizumab, amfenac, and their combination prior to application of the 8 Gy radiation led to a marked reduction in proliferation rates (p=0.009, p=0.01, and p=0.034, respectively) compared with controls. Conclusion: Combination of ranibizumab and amfenac reduced the proliferation rate of uveal melanoma cells; however, only amfenac monotherapy significantly decreased cell migration. The radiosensitivity of the 92.1 uveal melanoma cell line increased following the administration of ranibizumab, amfenac, and their combination. Further investigation is warranted to determine if this is a viable pretreatment strategy to render large tumors amenable to radiotherapy.


RESUMO Objetivo: Avaliar os efeitos do ranibizumabe em associação com o amfenac nas células de melanoma uveal humano e explorar a capacidade desses compostos em sensibilizar as células de melanoma uveal à radioterapia. Métodos: Células de melanoma uveal humano do tipo 92.1 foram cultivadas e submetidas ao tratamento proposto (ranibizumabe, amfenac e a combinação de ambos). Ensaios de proliferação, migração e invasão com as células de melanoma uveal do tipo 92.1 foram avaliados após tratamento com ranibizumabe (125 mg/ml), amfenac (150 nM) e a combinação de ambos. Além disso, as taxas de proliferação foram avaliadas após tratamento com ranibizumabe e amfenac com subsequente exposição das células a diferentes doses de radiação (0 Gy, 4 Gy e 8 Gy). Resultados: Ensaio de proliferação: células tratadas com ranibizumabe e amfenac combinados apresentaram taxas de proliferação inferiores em comparação ao grupo controle (p=0,016), do que as tratadas apenas com ranibizumabe (p=0,033). Ensaio de migração: foi observada uma taxa de migração significativamente mais baixa nas células tratadas com amfenac do que no grupo controle (p=0,014) e do que nas tratadas com ranibizumabe (p=0,044). Ensaio de invasão: não houve diferenças significativas entre os grupos estudados. Exposição à irradiação: no grupo da dose de 4 Gy, não houve diferença significante entre os grupos. No grupo da dose de 8 Gy, o tratamento com ranibizumabe, afenac e sua combinação antes da aplicação da radiação de 8 Gy levou a uma redução acentuada nas taxas de proliferação (p=0,009, p=0,01 e p=0,034, respectivamente) em comparação aos grupos controle. Conclusão: A combinação de ranibizumabe e amfenac reduziu a taxa de proliferação das células de melanoma uveal; no entanto, apenas o amfenac diminuiu significativamente a migração celular. A radiossensibilidade das células de melanoma uveal do tipo 92.1 aumentou após a administração de ranibizumabe, amfenac e sua combinação. Mais investigações são necessárias para determinar se esta é uma estratégia de pré-tratamento viável para tornar grandes tumores passíveis de radioterapia.


Subject(s)
Humans , Phenylacetates/pharmacology , Angiogenesis Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Ranibizumab/pharmacology , Melanoma/drug therapy , Melanoma/radiotherapy , Radiation Tolerance , Uveal Neoplasms/drug therapy , Uveal Neoplasms/radiotherapy , Antineoplastic Combined Chemotherapy Protocols , Cell Movement/drug effects , Cell Movement/radiation effects , Reproducibility of Results , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation
4.
Biol. Res ; 51: 56, 2018. graf
Article in English | LILACS | ID: biblio-1011400

ABSTRACT

BACKGROUND: Glioma is the most prevalent malignant tumor in human central nervous systems. Recently, the development of resistance to radiotherapy in glioma patients markedly vitiates the therapy outcome. MiR-153-3p has been reported to be closely correlated with tumor progression, but its effect and molecular mechanism underlying radioresistance remains unclear in glioma. METHODS: The expression of miR-153-3p was determined in radioresistant glioma clinical specimens as well as glioma cell lines exposed to irradiation (IR) using quantitative real-time PCR. Cell viability, proliferation and apoptosis were then evaluated by MTT assay, colony formation assay, Flow cytometry analysis and caspase-3 activity assay in glioma cells (U87 and U251). Tumor forming was evaluated by nude mice model in vivo. TUNEL staining was used to detect cell apoptosis in nude mice model. The target genes of miR-153-3p were predicted and validated using integrated bioinformatics analysis and a luciferase reporter assay. RESULTS: Here, we found that miR-153-3p was down-regulated in radioresistant glioma clinical specimens as well as glioma cell lines (U87 and U251) exposed to IR. Enhanced expression of miR-153-3p promoted the radiosensitivity, promoted apoptosis and elevated caspase-3 activity in glioma cells in vitro, as well as the radiosensitivity in U251 cell mouse xenografs in vivo. Mechanically, B cell lymphoma-2 gene (BCL2) was identified as the direct and functional target of miR-153-3p. Moreover, restoration of BCL2 expression reversed miR-153-3p-induced increase of radiosensitivity, apoptosis and caspase-3 activity in U251 cells in vitro. In addition, clinical data indicated that the expression of miR-153-3p was significantly negatively associated with BCL2 in radioresistance of glioma samples. CONCLUSIONS: Our findings suggest that miR-153-3p is a potential target to enhance the effect of radiosensitivity on glioma cells, thus representing a new potential therapeutic target for glioma.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Radiation Tolerance/genetics , Genes, bcl-2/physiology , MicroRNAs/radiation effects , MicroRNAs/physiology , Glioma/genetics , Time Factors , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Survival/radiation effects , Blotting, Western , Analysis of Variance , Gene Targeting/methods , Genes, bcl-2/radiation effects , In Situ Nick-End Labeling , MicroRNAs/analysis , Cell Line, Tumor , Cell Proliferation/radiation effects , Caspase 3/analysis , Real-Time Polymerase Chain Reaction , Flow Cytometry , Glioma/radiotherapy
5.
Clinics ; 73(supl.1): e792s, 2018.
Article in English | LILACS | ID: biblio-974957

ABSTRACT

Platelet activating factor is a lipid mediator of inflammation, and in recent decades, it has emerged as an important factor in tumor outcomes. Platelet activating factor acts by specific binding to its receptor, which is present in both tumor cells and cells that infiltrate tumors. Pro-tumorigenic effects of platelet activating factor receptor in tumors includes promotion of tumor cell proliferation, production of survival signals, migration of vascular cells and formation of new vessels and stimulation of dendritic cells and macrophages suppressor phenotype. In experimental models, blocking of platelet activating factor receptor reduced tumor growth and increased animal survival. During chemotherapy and radiotherapy, tumor cells that survive treatment undergo accelerated proliferation, a phenomenon known as tumor cell repopulation. Work from our group and others showed that these treatments induce overproduction of platelet activating factor-like molecules and increase expression of its receptor in tumor cells. In this scenario, antagonists of platelet activating factor markedly reduced tumor repopulation. Here, we note that combining chemo- and radiotherapy with platelet activating factor antagonists could be a promising strategy for cancer treatment.


Subject(s)
Animals , Platelet Membrane Glycoproteins/antagonists & inhibitors , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Neoplasms, Experimental/therapy , Combined Modality Therapy/methods , Cell Line, Tumor , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/therapy
6.
Braz. j. med. biol. res ; 51(12): e7862, 2018. graf
Article in English | LILACS | ID: biblio-974259

ABSTRACT

Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.


Subject(s)
Keratinocytes/radiation effects , Cell Movement/radiation effects , Phosphatidylinositol 3-Kinases/radiation effects , MAP Kinase Signaling System/radiation effects , Cell Proliferation/radiation effects , Ultrasonic Waves , Bromodeoxyuridine , Cell Line, Transformed , Signal Transduction/radiation effects , Keratinocytes/metabolism , Up-Regulation , Cell Survival/radiation effects , Blotting, Western , Reproducibility of Results , Analysis of Variance , Phosphatidylinositol 3-Kinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism
7.
Einstein (Säo Paulo) ; 15(3): 334-338, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-891405

ABSTRACT

ABSTRACT Objective To evaluate the effect of low-level laser irradiation on proliferation and viability of murine adipose-derived stem cells previously submitted to cryopreservation. Methods Adipose-derived stem cells were isolated from inguinal fat pads of three mice, submitted to cryopreservation in fetal bovine serum with 10% dimethylsulfoxide for 30 days and then thawed and maintained in normal culture conditions. Culture cells were either irradiated or not (control) with an InGaAIP diode laser at zero and 48 hours, using two different energy densities (0.5 and 1.0J/cm2). Cell proliferation was evaluated by trypan blue exclusion method and MTT assay at intervals of zero, 24, 48, and 72 hours after the first laser application. Cell viability and apoptosis of previously cryopreserved cells submitted to laser therapy were evaluated by flow cytometry. Results The Irradiated Groups (0.5 and 1.0J/cm2) showed an increased cell proliferation (p<0.05) when compared to the Control Group, however no significant difference between the two energy densities was observed. Flow cytometry revealed a percentage of viable cells higher than 99% in all groups. Conclusion Low-level laser irradiation has stimulatory effects on the proliferation of adipose-derived stem cells previously submitted to cryopreservation.


RESUMO Objetivo Avaliar o efeito do laser de baixa intensidade na proliferação e na viabilidade de células-tronco derivadas de tecido adiposo murinas previamente submetidas à criopreservação. Métodos Células-tronco derivadas de tecido adiposo foram isoladas da região inguinal de três camundongos, submetidas à criopreservação em soro fetal bovino com 10% de dimetilsulfóxido por 30 dias e, depois, descongeladas e mantidas em condições normais de cultivo. As células cultivadas foram irradiadas ou não (controle) com um laser de diodo InGaAIP nos intervalos de zero e 48 horas, utilizando duas densidades de energia diferentes (0,5 e 1,0J/cm2). A proliferação celular foi avaliada pelo método de exclusão de azul de tripan e ensaio MTT, nos intervalos de zero, 24, 48 e 72 horas após a primeira aplicação do laser. A viabilidade celular e a apoptose das células previamente criopreservadas submetidas à laserterapia foram avaliadas por citometria de fluxo. Resultados Os Grupos Irradiados (0,5 e 1,0J/cm2) apresentaram aumento da proliferação celular (p<0,05) quando comparados ao Grupos Controle, porém não foi observada diferença significativa entre as duas densidades de energia. A citometria de fluxo revelou percentagem de células viáveis superior a 99% em todos os grupos. Conclusão O laser de baixa intensidade tem efeitos estimuladores sobre a proliferação de células-tronco derivadas de tecido adiposo previamente submetidas à criopreservação.


Subject(s)
Animals , Stem Cells/radiation effects , Cryopreservation , Cell Survival/radiation effects , Adipocytes/radiation effects , Low-Level Light Therapy , Cell Proliferation/radiation effects , Stem Cells/cytology , Cells, Cultured , Apoptosis/radiation effects , Adipocytes/cytology , Lasers, Semiconductor , Flow Cytometry , Mice
8.
J. appl. oral sci ; 24(4): 332-337, July-Aug. 2016. graf
Article in English | LILACS, BBO | ID: lil-792592

ABSTRACT

ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study.


Subject(s)
Humans , Stem Cells/radiation effects , Tooth, Deciduous/cytology , Tooth, Deciduous/radiation effects , Tooth Exfoliation , Low-Level Light Therapy/methods , Radiation Dosage , Rhodamines , Tetrazolium Salts , Time Factors , Cell Survival/radiation effects , Cells, Cultured , Reproducibility of Results , Analysis of Variance , Cell Proliferation/radiation effects , Formazans
9.
Bauru; s.n; 2016. 133 p. tab, ilus.
Thesis in Portuguese | LILACS, BBO | ID: biblio-881837

ABSTRACT

O objetivo deste trabalho foi comparar os efeitos de diferentes densidades de energia e irradiâncias do Laser de Baixa Intensidade (LBI), variando em função do tempo de irradiação e potência, na viabilidade e proliferação de fibroblastos derivados da polpa de dentes decíduos humanos (HPF). HPF foram cultivados em DMEM e usados entre a 4ª e 8ª passagem. Os grupos foram divididos de acordo com diferentes densidades de energia, variando: Tempo de irradiação - Grupo I Ia (1,2 J/cm2 - 5 mW - 10 s), Ib (2,5 J/cm2 - 5 mW - 20 s), Ic (3,7 J/cm2 - 5 mW - 30 s), Id (5,0 J/cm2 - 5 mW - 40 s), e Ie (6,2 J/cm2 - 5 mW - 50 s); ou potência - Grupo II IIa (1,2 J/cm2 - 5 mW - 10 s), IIb (2,5 J/cm2 - 10 mW - 10 s), IIc (3,7 J/cm2 - 15 mW - 10 s), IId (5,0 J/cm2 - 20 mW - 10 s), e IIe (6,2 J/cm2 - 25 mW - 10 s). Células não irradiadas - cultivadas em condições nutricionais regulares - 10% Soro Fetal Bovino (SFB) (If e IIf) e células não irradiadas - cultivadas em déficit nutricional - 1% SFB (Ig e IIg), foram consideradas controles positivos e negativos, respectivamente. A viabilidade e proliferação celular foram avaliadas, repesctivamente, pelas técnicas MTT e Cristal violeta (CV), nos períodos de 24, 48 e 72 horas após a irradiação. Os dados obtidos foram submetidos à análise estatística por ANOVA 2 critérios, seguido pelo teste de Tukey (P<0,05). No ensaio MTT, os controles negativos, Ig e IIg, apresentaram significativamente menor viabilidade em relação aos correspondentes grupos experimentais: IIa e IIb, 24 horas após a irradiação; Ia, Ib, Ie, If e IIf no período de 48 horas; e Ib-If, assim como, IIa-IIf após 72 horas. Nos diferentes períodos de avaliação do ensaio CV, todos os grupos, exceto Ie, IIe e If, exibiram significativamente maior proliferação em comparação aos respectivos controles negativos. Dentro de um mesmo grupo nos diferentes períodos, os grupos If e IIe apresentaram menor viabilidade durante o período de 24 horas em comparação ao período de 72 horas pelo ensaio MTT. Na avaliação intragrupos, o ensaio CV revelou menor proliferação no período de 24 horas em comparação aos períodos de 48 e 72 horas, independente do grupo avaliado. Os diferentes protocolos de irradiação, grupos I e II, não apresentaram diferença estatisticamente significativa na viabilidade e proliferação celular entre densidades de energia iguais com irradiâncias diferentes durante os períodos avaliados. De acordo com os resultados obtidos, as diferentes densidades de energia e irradiâncias propostas não prejudicaram a viabilidade e proliferação de fibroblastos pulpares de dentes decíduos humanos. A variação do protocolo de irradiação LBI, em função do tempo ou da potência, não interferiram nas respostas celulares após a aplicação da mesma densidade de energia com irradiâncias diferentes.(AU)


The aim of this study was to compare the effects of Low-level laser (LLL) with different energy densities and irradiances, varying according to the irradiation time and power, on cell viability and proliferation of pulp fibloblasts from human primary teeth (HPF). HPF were culture in DMEM and used between 4th and 8th passages. Groups were divided according to different energy densities, varying: Time of irradiation Ia (1.2 J/cm2 - 5 mW - 10 s), Ib (2.5 J/cm2 - 5 mW - 20 s), Ic (3.7 J/cm2 - 5 mW - 30 s), Id (5.0 J/cm2 - 5 mW - 40 s), and Ie (6.2 J/cm2 - 5 mW - 50 s); or output power - Grupo II IIa (1.2 J/cm2 - 5 mW - 10 s), IIb (2.5 J/cm2 - 10 mW - 10 s), IIc (3.7 J/cm2 - 15 mW - 10 s), IId (5.0 J/cm2 - 20 mW - 10 s), e IIe (6.2 J/cm2 - 25 mW - 10 s). Non-irradiated cells - grown in regular nutritional conditions - 10% Fetal Bovine Serum (FSB) (If and IIf) and non-irradiated cells - grown in nutritional deficit - 1% FBS (Ig and IIg) were considered positive and negative controls, respectively. Cell viability and proliferation were respectively assessed through MTT and Crystal violet (CV) assays at 24, 48 and 72h after irradiation. Data were submitted to statistical analysis by ANOVA 2 criteria, followed by Tukey test (P<0.05). In the MTT assay, the negative controls, Ig and IIg, showed significantly lower viability in relation to the corresponding groups: IIa and IIb 24 hours after irradiation; Ia, Ib, Ie, If and IIf at 48 hours period; and Ib-If, as IIa-IIf, after 72 hours. At different periods of evaluation of CV assay, all groups, except Ie, IIe and If, exhibited significantly higher proliferation compared to the respective negative controls. Within the same group at different periods, groups If and IIe showed lower viability during 24 hours compared to 72 hours period by MTT assay. In the intragroup evaluation, CV assay revealed lower proliferation at 24 hours compared to 48 and 72 hours periods, regardless of the evaluated group. Different irradiation protocols, groups I and II, showed no statistically significant differences on cell viability and proliferation among equals energy densities with different irradiances at the evaluated periods. According to these findings, different LLL energy densities and irradiances proposed did not impair viability and proliferation of pulp fibloblasts from human primary teeth. The variation of the LLL irradiation protocol, by the time or power, did not interfere in cellular responses after the application of the same energy density with different irradiances.(AU)


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Dental Pulp/cytology , Fibroblasts/radiation effects , Lasers, Solid-State , Low-Level Light Therapy/methods , Radiation Dosage , Analysis of Variance , Cell Count , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Dental Pulp/radiation effects , Gentian Violet , Reproducibility of Results , Time Factors , Tooth, Deciduous/cytology
10.
Braz. oral res. (Online) ; 30(1): e80, 2016. tab, graf
Article in English | LILACS | ID: biblio-951980

ABSTRACT

Abstract Dental trauma in immature permanent teeth can damage pulp vascularization, which leads to necrosis and cessation of apexogenesis. Studies on tissue engineering using stem cells from human exfoliated deciduous teeth (SHEDs) have yielded promising results. Laser phototherapy (LPT) is able to influence the proliferation and differentiation of these cells, which could improve tissue engineering. SHEDs (eighth passage) were seeded into 96-well culture plates (103 cells/well) and were grown in culture medium supplemented with 15% defined fetal bovine serum (FBS) for 12 h. After determining the appropriate nutrition deficiency status (5% FBS), the cells were assigned into four groups: 1) G1 - 15% FBS (positive control); 2) G2 - 5% FBS (negative control); 3) G3 - 5% FBS+LPT 3 J/cm2; and 4) G4 - 5% FBS+LPT 5 J/cm2. For the LPT groups, two laser irradiations at 6 h intervals were performed using a continuous wave InGaAlP diode laser (660 nm, with a spot size of 0.028 cm2, 10 mW) in punctual and contact mode. Cell viability was assessed via an MTT reduction assay immediately after the second laser irradiation (0 h) and 24, 48, and 72 h later. We found that G3 and G4 presented a significantly higher cell growth rate when compared with G2 (p < 0.01). Moreover, G4 exhibited a similar cell growth rate as G1 throughout the entire experiment (p > 0.05). These findings indicate that LPT with 5 J/cm2 can enhance the growth of SHEDs during situations of nutritional deficiency. Therefore, LPT could be a valuable adjunct treatment in tissue engineering when using stem cells derived from the dental pulp of primary teeth.


Subject(s)
Humans , Animals , Cattle , Stem Cells/radiation effects , Tooth, Deciduous/cytology , Low-Level Light Therapy/methods , Dental Pulp/cytology , Malnutrition , Radiometry , Time Factors , Tooth, Deciduous/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Reproducibility of Results , Analysis of Variance , Culture Media , Tissue Engineering , Dental Pulp/radiation effects , Cell Proliferation/radiation effects
11.
Yonsei Medical Journal ; : 1282-1285, 2016.
Article in English | WPRIM | ID: wpr-79762

ABSTRACT

To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.


Subject(s)
Humans , Blood Platelets/cytology , Cell Movement/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Collagen/metabolism , Fibrin/metabolism , Fibroblasts/cytology , Skin/cytology , Time Factors , Ultraviolet Rays/adverse effects
12.
Article in English | IMSEAR | ID: sea-156533

ABSTRACT

Ionizing radiation is a non-specific, but most widely used therapeutic method for cancer treatment. However, a minor fraction of tumor cell population manages to survive after radiation. Radiation efficacy depends on adequate oxygen supply. Rapid growing tumors cause hypoxia that upregulates many pro-survival pathways. At clinical doses, radiation activates inflammatory pathways and causes oxidative stress that plays a positive role during angiogenesis. Selective targeting of signaling mechanisms may radiosensitize tumors.


Subject(s)
Animals , Cell Hypoxia/immunology , Cell Hypoxia/radiation effects , Cell Proliferation/radiation effects , Cytokines/immunology , Humans , Models, Immunological , Neoplasms/immunology , Neoplasms/radiotherapy , /immunology , /radiotherapy , Oxygen/immunology , Radiation, Ionizing , Radiotherapy, Conformal/methods , Treatment Outcome
13.
Acta cir. bras ; 29(9): 588-595, 09/2014. graf
Article in English | LILACS | ID: lil-722130

ABSTRACT

PURPOSE: To compare the biomodulatory effects of LED and ultrasound combined with semipermeable dressing in the repair of cutaneous lesions. METHODS: Eighty-four Wistar rats were submitted to surgical injury (2.5 cm) and divided into four groups (n=21): Group I (control), Group II (LED therapy, LED), Group III (LED therapy + dressing, LED+D) and Group IV (ultrasound + dressing, US+D). At seven, 14 and 21 days, the animals were euthanized, and the specimens of interest removed for histological analysis. RESULTS: Histological and histomorphometric analysis revealed a greater percent wound regression in animals receiving the dressing (group III: 55.97; group IV: 53.06), as well as a greater reduction in the inflammatory infiltrate (group III: 29.14; group IV: 31.71) since day 7. A later effect, with progression of the tissue repair process only after 14 and 21 days, was observed in the LED group intense fibroblast proliferation and greater collagen fiber production and organization were seen in the LED+D and US+D groups compared to the other groups. CONCLUSION: LED combined with a dressing was more effective at accelerating in the repair of cutaneous lesions. .


Subject(s)
Animals , Male , Bandages , Phototherapy/methods , Skin/injuries , Ultrasonic Therapy/methods , Wound Healing/physiology , Cell Proliferation/radiation effects , Collagen/analysis , Collagen/radiation effects , Combined Modality Therapy/methods , Dermatitis/pathology , Dermatitis/therapy , Fibroblasts/radiation effects , Random Allocation , Rats, Wistar , Reproducibility of Results , Skin/pathology , Skin/radiation effects , Time Factors , Treatment Outcome
14.
Einstein (Säo Paulo) ; 12(1): 75-81, Jan-Mar/2014. tab, graf
Article in English | LILACS | ID: lil-705800

ABSTRACT

Objective : To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Methods : Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm2). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4’-6-diamidino-2-phenylindole) at 72 hours. Results : Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm2, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm2, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Conclusion : Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering. .


Objetivo : Avaliar o efeito da terapia com laser de baixa intensidade sobre a proliferação e as possíveis alterações morfológicas nucleares em células-tronco mesenquimais de camundongos. Métodos : Células-tronco mesenquimais derivadas da medula óssea e do tecido adiposo foram submetidas a duas aplicações (T0 e T48 horas) de laser de baixa intensidade (660nm; doses de 0,5 e 1,0J/cm2). O ensaio de azul de tripan foi utilizado para a avaliação da viabilidade celular, e curvas de crescimento foram usadas para avaliar a proliferação das células em zero, 24, 48, e 72 horas. Alterações nucleares foram avaliadas por coloração com DAPI (4-6-diamidino-2-fenilindolo) em 72 horas. Resultados : As células-tronco mesenquimais derivadas da medula óssea responderam a terapia com laser de forma dose-dependente. Um maior crescimento celular foi observado quando as células foram irradiadas com dose de 1,0J/cm2, especialmente depois de 24 horas (p<0,01). As células-tronco mesenquimais derivadas do tecido adiposo responderam melhor à dose de 1,0J/cm2, com maior proliferação após 48 (p<0,05) e 72 horas (p<0,01). Nem alterações nucleares nem a mudança significativa na viabilidade celular foi detectada nos grupos estudados. Conclusão : Laser de baixa intensidade estimulou a proliferação de células-tronco mesenquimais sem causar alterações nucleares. A bioestimulação de células-tronco mesenquimais por laserterapia pode ser uma ferramenta importante para a terapia regenerativa e a engenharia tecidual. .


Subject(s)
Animals , Humans , Male , Mice , Cell Proliferation/radiation effects , Low-Level Light Therapy/methods , Mesenchymal Stem Cells/radiation effects , Adipose Tissue/cytology , Bone Marrow Cells/cytology , Bone Marrow Cells/radiation effects , Cell Survival/drug effects , Cells, Cultured/radiation effects , Dose-Response Relationship, Radiation , Lasers, Semiconductor/therapeutic use , Mesenchymal Stem Cells/cytology , Radiation Dosage , Reproducibility of Results , Time Factors
15.
Bauru; s.n; 2014. 71 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-867160

ABSTRACT

Avaliou-se a proliferação das células tronco da polpa de dentes decíduos esfoliados humanos (SHED) após aplicação única do laser de baixa potência. Foi realizada a análise da viabilidade das SHED cultivadas sob déficit nutricional e em condições ideais após irradiação com o laser de baixa potência vermelho de Indio Gálio Alumínio e Fósforo - InGaAlP (660nm, 40mW e 10J/cm2) e infravermelho (780nm, 40mW e 10J/cm2) durante 4 e 8 segundos, nos períodos de 24, 48 e 72 horas através dos ensaios de redução do MTT e do ensaio colorimétrico de Busatti e Gomes. Para análise estatística utilizou-se o teste ANOVA complementado pelo teste de Tukey com nível de significância de 5% (p< 0,05). Observou-se tanto com o MTT quanto com o ensaio colorimétrico de Busatti e Gomes uma tendência de aumento da proliferação celular diretamente relacionada à dose do LBP, estatisticamente significante nos períodos de 24, 48 e 72 horas. Ao analisar os resultados e considerando os parâmetros utilizados e o protocolo de LBP, pode-se concluir que o LBP promoveu a proliferação das SHED tanto a 660 nm quanto a 780nm, pode influenciar a viabilidade e a proliferação das SHED nas doses e comprimentos de onda utilizados e os ensaios do MTT e colorimétrico de Busati e Gomes demonstraram dentro de suas limitações ser eficientes para determinar a viabilidade e proliferação das SHED.


It was evaluated the proliferation of stem cells from human exfoliated deciduous teeth (SHED) after a single application of low power laser. The viability of SHED grown under ideal conditions and under nutritional deficit after irradiation with red laser (660/780nm, 10J/cm2 and 40mW) during periods of 4 and 8 seconds was analyzed through the MTT reduction assays and rapid colorimetric assay of Busatti and Gomes. Statistical analysis was performed using the ANOVA and Tukey´s multiple comparisons test with a significance level of 5% (p < 0.05). It was observed with the MTT assay and Busatti and Gomes assay a trend of cell proliferation increase directly releated to the irradiation dose, statistically significant. After 24, 48 and 72 hours, all the groups showed higher cell proliferation when compared to control. Analyzing the results and considering the used parameters and LBP protocol, it can be concluded that LBP promoted the proliferation of SHED both 660nm and 780nm according to the dosage and wavelengths used, and MTT assay and colorimetric Busatti and Gomes demonstrated within their limitations to be effective in determining the viability and proliferation of SHED.


Subject(s)
Humans , Stem Cells/radiation effects , Tooth, Deciduous/radiation effects , Low-Level Light Therapy , Dental Pulp/radiation effects , Analysis of Variance , Colorimetry , Cells, Cultured/radiation effects , Tooth, Deciduous/cytology , Radiation Dosage , Dental Pulp/cytology , Cell Proliferation/radiation effects , Time Factors
16.
Bauru; s.n; 2014. 71 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-756914

ABSTRACT

Avaliou-se a proliferação das células tronco da polpa de dentes decíduos esfoliados humanos (SHED) após aplicação única do laser de baixa potência. Foi realizada a análise da viabilidade das SHED cultivadas sob déficit nutricional e em condições ideais após irradiação com o laser de baixa potência vermelho de Indio Gálio Alumínio e Fósforo - InGaAlP (660nm, 40mW e 10J/cm2) e infravermelho (780nm, 40mW e 10J/cm2) durante 4 e 8 segundos, nos períodos de 24, 48 e 72 horas através dos ensaios de redução do MTT e do ensaio colorimétrico de Busatti e Gomes. Para análise estatística utilizou-se o teste ANOVA complementado pelo teste de Tukey com nível de significância de 5% (p< 0,05). Observou-se tanto com o MTT quanto com o ensaio colorimétrico de Busatti e Gomes uma tendência de aumento da proliferação celular diretamente relacionada à dose do LBP, estatisticamente significante nos períodos de 24, 48 e 72 horas. Ao analisar os resultados e considerando os parâmetros utilizados e o protocolo de LBP, pode-se concluir que o LBP promoveu a proliferação das SHED tanto a 660 nm quanto a 780nm, pode influenciar a viabilidade e a proliferação das SHED nas doses e comprimentos de onda utilizados e os ensaios do MTT e colorimétrico de Busati e Gomes demonstraram dentro de suas limitações ser eficientes para determinar a viabilidade e proliferação das SHED...


It was evaluated the proliferation of stem cells from human exfoliated deciduous teeth (SHED) after a single application of low power laser. The viability of SHED grown under ideal conditions and under nutritional deficit after irradiation with red laser (660/780nm, 10J/cm2 and 40mW) during periods of 4 and 8 seconds was analyzed through the MTT reduction assays and rapid colorimetric assay of Busatti and Gomes. Statistical analysis was performed using the ANOVA and Tukey´s multiple comparisons test with a significance level of 5% (p < 0.05). It was observed with the MTT assay and Busatti and Gomes assay a trend of cell proliferation increase directly releated to the irradiation dose, statistically significant. After 24, 48 and 72 hours, all the groups showed higher cell proliferation when compared to control. Analyzing the results and considering the used parameters and LBP protocol, it can be concluded that LBP promoted the proliferation of SHED both 660nm and 780nm according to the dosage and wavelengths used, and MTT assay and colorimetric Busatti and Gomes demonstrated within their limitations to be effective in determining the viability and proliferation of SHED...


Subject(s)
Humans , Stem Cells/radiation effects , Tooth, Deciduous/radiation effects , Low-Level Light Therapy , Dental Pulp/radiation effects , Analysis of Variance , Colorimetry , Cells, Cultured/radiation effects , Tooth, Deciduous/cytology , Radiation Dosage , Dental Pulp/cytology , Cell Proliferation/radiation effects , Time Factors
17.
Bauru; s.n; 2013. 147 p. tab, ilus, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-866939

ABSTRACT

Dentre os vários compostos utilizados na pesquisa e na terapia de doenças osteo-degenerativas, a fototerapia com laseres de baixa potência (LLLT) e os diodos emissores de luz (LEDs) vem sendo investigada com o intuito de avaliar seus efeitos no metabolismo ósseo. Estes, que possuem comprimentos de ondas específicos, atuam na biomodulação das células, funcionando como um agente terapêutico, reequilibrando e normalizando a sua atividade. No entanto, pouco se sabe sobre o efeito dos diferentes espectros na proliferação e diferenciação de osteoblastos humanos, bem como seus efeitos no metabolismo celular como a síntese e a ativação de proteínas sinalizadoras envolvidas nesses processos. Diante disso, o objetivo deste trabalho foi avaliar, comparativamente, a influência da fototerapia com LLLT e LED na proliferação e diferenciação de osteoblastos humanos. Além disso, investigamos o envolvimento da ativação da via de sinalização ERK1,2 nestas respostas, utilizando o seu inibidor específico e/ou avaliando a sua ativação durante a proliferação e após fototerapia. Para esse estudo, osteoblastos humanos (HOAL) foram cultivados em meio de cultura DMEM suplementado com 10% de soro fetal bovino (SFB) e incubados em estufa de CO2. As células foram irradiadas pontualmente com os laseres vermelho (660nm), infravermelho (780nm) e LED (637nm), nas doses de 10, 20 e 50 J/cm2 na potência de 40mW, após adesão celular. Após 24, 48, e 72 horas foram realizados os ensaios de redução do MTT (brometo de 3-(4,5-dimetiltiazol-2-yl)-2,5- difeniltetrazólio) e cristal violeta (CV) para avaliar a viabilidade das células e após 72 horas foi realizada a análise da proliferação por citometria de fluxo nos quais os resultados sugerem aumento de células viáveis ou proliferação quando estimuladas pelos diferentes espectros. Após a verificação do efeito positivo dos laseres e LED na viabilidade e/ou proliferação, foi realizada a análise da ativação da proteína intracelular ERK...


Among the various compounds used in research and bone degenerative diseases therapy, phototherapy with low level laser (LLLT) and light emitting diodes (LEDs) has been investigated in order to evaluate its effects on bone metabolism. Those, who have specific wavelengths, act in biomodulation cells functioning as a therapeutic agent, rebalancing and normalizing their activity. However, little is known about the effect of the different spectra in the proliferation and differentiation of human osteoblasts and their effects on cellular metabolism as well as the synthesis and activation of signaling proteins involved in these processes. Therefore, the aim of this study was to compare the influence of LLLT and LED phototherapy in the proliferation and differentiation of human osteoblasts. In addition, we investigated the involvement of activation of ERK1,2 signaling pathway these responses using its specific inhibitor and/or evaluating their activation during the proliferation and after phototherapy. For this study, human osteoblasts (HOAL) were cultured in DMEM culture medium supplemented with 10 % fetal bovine serum (FBS) and incubated in CO2 incubator . Cells were irradiated with punctual red lasers (660nm), infrared (780nm) and LED (637nm) at doses of 10, 20 and 50 J/cm2 in power 40mW, after cell adhesion. After 24, 48, and 72 hours, MTT assay (- (4,5- dimethylthiazol-2- yl) -2,5 - diphenyltetrazolium bromide 3 ) and violet crystal (CV) were performed to assess the viability of cells and after 72 hours, was performed of proliferation analysis by flow cytometry. The results suggest an increase in viable and proliferation of cells when stimulated by different spectra. After checking the positive effect of lasers and LED viability and/or proliferation, analysis of ERK activation of intracellular protein by western blotting using a specific antibody was performed 10 minutes after the spot irradiation. We show that irradiation of HOAL cells with LLLT at a dose...


Subject(s)
Humans , Cell Differentiation , Osteoblasts/radiation effects , Cell Proliferation/radiation effects , Low-Level Light Therapy/methods , Blotting, Western , Cells, Cultured , Flow Cytometry , Lasers, Semiconductor , Cell Survival/radiation effects , Time Factors
18.
Biol. Res ; 46(1): 39-45, 2013. ilus
Article in English | LILACS | ID: lil-676819

ABSTRACT

Carotenoids are efficient antioxidants that are of great importance for human health. Lutein and zeaxanthin are carotinoids present in high concentrations in the human retina which are involved in the photoprotection of the human eye. Lutein may also protect the skin from ultraviolet (UV)-induced damage. The present study investigated the protective effect of lutein extracted from yellow silk cocoons of Bombyx mori on human keratinocytes against UVB irradiation. A human keratinocyte cell line and primary human keratinocytes were used to investigate the UVB protection effects of silk lutein and plant lutein. Silk lutein showed no cytotoxicity to keratinocytes. Treatment with silk lutein prior to UVB irradiation enhanced cell viability and cell proliferation, and reduced cell apoptosis. The protective effects of silk lutein may be superior to those of plant lutein. Silk lutein may have a benefit for protection of keratinocytes against UVB-irradiation.


Subject(s)
Animals , Humans , Male , Keratinocytes/radiation effects , Lutein/pharmacology , Radiation-Protective Agents/pharmacology , Silk/chemistry , Ultraviolet Rays/adverse effects , Apoptosis/drug effects , Apoptosis/radiation effects , Bombyx/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Foreskin/radiation effects , Lutein/isolation & purification , Primary Cell Culture , Radiation-Protective Agents/isolation & purification
19.
An. bras. dermatol ; 85(6): 849-855, nov.-dez. 2010. ilus
Article in Portuguese | LILACS | ID: lil-573624

ABSTRACT

Os lasers de baixa potência promovem efeitos biológicos benéficos, de caráter analgésico, antiinflamatório e cicatrizante, por meio de um fenômeno de bioestimulação. A radiação emitida pelo laser terapêutico afeta os processos metabólicos das células-alvo, produzindo efeitos bioestimulantes que resultam na ocorrência de eventos celulares e vasculares, os quais parecem interferir diretamente no processo de reparo. Este trabalho visa estudar o fenômeno da bioestimulação e destacar os principais efeitos bioestimulantes do laser de baixa potência na reparação tecidual.


The wound healing process has always been an excellent subject for researchers. The use of low-power laser on wounds during the postoperative phase has increased the speed of the healing process. It has been implied that low power radiation affects cellular metabolic processes and promotes beneficial biological effects (analgesic, anti-inflammatory, and healing). Laser biostimulation appears to influence the behavior of the repair process. This paper aims at reviewing the most interesting aspects of the use of low-power laser in the tissue-repair process.


Subject(s)
Animals , Humans , Low-Level Light Therapy/methods , Wound Healing/radiation effects , Cell Proliferation/radiation effects , Collagen/radiation effects , Fibroblasts/radiation effects , Gingiva/radiation effects , Tooth Extraction
20.
Rev. Col. Bras. Cir ; 37(4): 295-302, jul.-ago. 2010.
Article in Portuguese | LILACS | ID: lil-564253

ABSTRACT

O uso da luz laser de baixa intensidade vem sendo utilizado como terapia coadjuvante ou de forma terapêutica isolada em várias especialidades odontológicas. Suas principais indicações incluem ação anti-inflamatória, analgésica e indutora da reparação tecidual. O poder cicatrizante do laser de baixa potência é discutido neste trabalho assim como os mecanismos de biomodulação e estimulação da mitose. Estas propriedades, já estudadas em células benignas, quando aplicadas em células neoplásicas malignas, abrem espaço para discussões. O objetivo do presente trabalho foi realizar uma revisão da literatura sobre os aspectos indutivos do laser no processo de proliferação celular principalmente no que se refere a estes mecanismos em células neoplásicas malignas.


Low energy laser has been used as an adjuvant therapy or as a therapeutic tool in many different areas of Dentistry. It is recognized by its anti-inflammatory and analgesic properties, and also as a tissue repair inductor. Low intensity laser property in stimulate cell proliferation during wound healing and its biomodulation mechanisms are discussed in this paper. These properties have already been established for cultured benign cells, but there is a controversy when extended to the spectrum of the malignant neoplastic process, normally generating great discussions. The objective of this work was to perform a literature review about the low intensity laser capacity in induce cell proliferation. The discussion is specially concerned about its effects on malignant cells.


Subject(s)
Humans , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Laser Therapy/methods , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL